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A B S T R A C T   

Multimodal sentiment analysis and emotion recognition has become an increasingly popular research area, 
where the biggest challenge is to efficiently fuse the input information from different modality. The recent 
success is largely credited to the attention-based models, e.g., transformer and its variants. However, the 
attention-based mechanism often neglects the coherency of human emotion due to its parallel structure. Inspired 
by the emotional arousal model in cognitive science, a Deep Emotional Arousal Network (DEAN) that is capable 
of simulating the emotional coherence is proposed in this paper, which incorporates the time dependence into 
the parallel structure of transformer. The proposed DEAN model consists of three components, i.e., a cross-modal 
transformer is devised to simulate the functions of perception analysis system of humans; a multimodal BiLSTM 
system is developed to imitate the cognitive comparator, and a multimodal gating block is introduced to mimic 
the activation mechanism in human emotional arousal model. We perform extensive comparison and ablation 
studies on three benchmarks for multimodal sentiment analysis and emotion recognition. The empirical results 
indicate that DEAN achieves state-of-the-art performance, and useful insights are derived from the results.   

1. Introduction 

Human emotions are controlled by neuronal circuits, which collect 
emotional information and generate emotional behaviors through 
physiological arousal [1]. In most communication scenario, people 
usually need to extend language-based sentiment analysis and emotion 
recognition to multimodal settings [2,3]. 

Transformer (Vaswani et al., 2017) and its variants ([4]; Lan et al., 
2019) have become increasingly popular for multimodal sentiment 
analysis and emotion recognition recently [5,6]. These attention-based 
methods can model the global dependency between every two utter
ances directly and can be implemented in a parallel structure as well. 
Therefore, it is powerful to deal with the dependency in sequence with a 
large scale by reducing the constraint of sequential computation. 
However, three main challenges remain:  

(a) the attention-based fusion strategy cannot model the coherence 
of emotions due to its parallel structure. In general, current 
human emotion is usually affected by past emotional memory. As 
shown in Fig. 1, the positive emotions of narrator are getting 
more and more explicit over time from successive fragment; 

(b) the existing attention-based models usually neglect the distinc
tion of different modalities by simple concatenation ([5], 2020), 
while the experimental results of previous study [7] indicate that 
different modalities have different influences on classification 
results, and language modality often has greater influence than 
visual and audio. 

More importantly, the accuracy of most multimodal models depends 
heavily on the fusion strategy. Therefore, instead of putting great efforts 
to the fusion strategy, it is essential to explore an integral framework by 
simulating human communication with multimodal inputs. 

Inspired by the emotional arousal model in psychology [8], a Deep 
Emotional Arousal Network (DEAN) is proposed in this paper to deal 
with the aforementioned challenges. DEAN consists of three compo
nents: a Cross-modal Transformer, a Multimodal BiLSTM System and a 
Multimodal Gating Block. These components are designed to simulate 
the functions of perception analysis system, cognitive comparator, and 
activation mechanism in the psychological emotional arousal in 
humans, respectively (see Fig. 2). 

The Cross-modal Transformer explores the spatial interaction be
tween modalities by employing an improved self-attention mechanism 
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with cross talking-heads attention. The Multimodal BiLSTM System 
models the coherence of emotions by exploiting a Bidirectional LSTM 
(Long Short-Term Memory) network, which enables DEAN to capture 
the temporal interaction among modalities. The Multimodal Gating 
Block implicitly performs the fusion of multimodal information by 
adaptively controlling the output of the gated systems. DEAN tries to 
provide an integral framework and an alternative idea of guiding the 
learning system along a human-like path that leads to the progressive 
acquisition of complex understanding of human emotions. 

For evaluation, we conduct extensive experiments and ablation 
studies using the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets for 
multimodal sentiment analysis and emotion recognition. The experi
mental results indicate that DEAN achieves state-of-the-art perfor
mances on these benchmark datasets. 

2. Related Studies 

The purpose of multimodal sentiment analysis and emotion recog
nition is to predict the sentiment or emotion label of each multimodal 

input. The vital challenge lies in the fusion strategies of multimodal 
inputs, which can be achieved in model-agnostic or model-based 
methods. The model-agnostic fusion methods include early, late and 
hybrid fusion, without involving specific classifiers or regression 
models. On the contrary, model-based methods address multimodal 
fusion problem with fusion model construction. 

Model-agnostic fusion methods: The model-agnostic fusion 
methods can be divided into early, late and hybrid fusion strategies 
according to the way multimodal inputs are fused. The early fusion 
strategy, also called feature-level fusion, usually relies on generic 
models to learn the representative features and then simply integrates 
the extracted features by concatenation or weighted combination. Due 
to the powerful representation capability of deep learning, the recent 
proposed early fusion strategies usually employ Convolutional Neural 
Networks (CNNs) [9–11], LSTM models [12,13] or Recurrent Neural 
Networks (RNNs) [14,15] for feature extraction. 

However, these early fusion strategies are ineffective in tackling the 
intra-modality dynamics. In addition, deep learning-based early fusion 
strategies tend to suffer from the overfitting problem due to their 

Fig. 1. Continuous video clips in MOSI dataset  

Fig. 2. (a) The psychological emotional arousal model consists of three subsystems: a perceptual analysis system, a cognitive comparator, and an activation 
mechanism. (b) Deep Emotional Arousal Network (DEAN) is constitutive of three modules: a Multimodal Transformer, a Multimodal BiLSTM System and a Multi
modal Gating Block, which are used to mimic the function of the subsystems in the psychological emotional arousal model in (a). 
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massive network structures. The late fusion strategies independently 
devise one classifier for each modality and aggregate the outputs of each 
classifier by averaging, weighted sum or voting [2,16]. Hybrid fusion 
strategies [17], which combine the advantages of early fusion and later 
fusion based on each unimodal prediction, normally outperform early or 
later fusion counterparts [18]. Nevertheless, all these fusion strategies 
lack the ability to model the inter-modality dynamics since the dynamics 
behind fusion strategies are far more complex than a decision vote. 
Therefore, fusion strategies remain a major challenge for sentiment 
analysis and emotion recognition. 

Model-based fusion methods: Earlier examples of model-based 
fusion methods include Multiple Kernel Learning (Gönen and Ethem, 
2011), Bilinear Fusion [19] and Graphical Models [20]. Recent 
model-based fusion methods mainly include: 

(1) Tensor-based fusion, with the representative models of Tensor 
Fusion Network (TFN) [21], Low-rank Multimodal Fusion (LMF) [2] and 
Locally confined modality fusion network [22]; (2) Translation-based 
fusion, with examples include Modality Translation Model (MCTN) 
[23] and Seq2Seq Modality Translation Model (SSMT) [24]; (3) 
Attention-based fusion, which exploits various attention mechanism 
components to fuse modalities. As an example, the Multi-attention 
Recurrent Network (MARN) (Zadeh et al., 2018) models interactions 
between modalities using a Multi-Attention Block and stores them in a 
hybrid memory. The Multimodal Transformer (MulT) [5] merges 
multimodal information via a feedforward fusion process from multiple 
directional modality transformers. The Recurrent Attended Variation 
Embedding Network (RAVEN) [25] builds human language by shifting 
word representations based on the nonverbal behavior’s patterns. 
Detailed experimental results [7] show that attention-based fusion 
methods improve performance for sentiment analysis and emotion 
recognition tasks as compared with other model-based fusion methods. 
The reason is that attention-based fusion methods can implicitly model 
the inter-dynamic and intra-dynamic of different modalities. 

However, most attention-based methods, which are typically 
modeled with Transformer [5,6,25], generally neglect the coherency of 
human emotions due to their parallel structure. Moreover, most existing 
attention-based mechanisms neglect the distinction of different modal
ities by simple concatenation [5]. 

Inspired by an emotional arousal model in psychology, a Deep 
Emotional Arousal Network (DEAN) is proposed in this paper. The 
DEAN model formulates an integral framework for multimodal senti
ment analysis and emotion recognition. The components in DEAN 
incorporate the capability of understanding multimodalities communi
cation, as humans do. 

The advantages of DEAN are: (1) modelling the emotional coherence 
by introducing time-dependent interactions into the parallel structure of 
Transformer; (2) identifying the distinctions of different modalities by 

embedding a multimodal gating mechanism; and (3) providing an in
tegral framework for human communication with multimodal infor
mation based on a human phycological model. Extensive performance 
evaluation experiments and ablation studies on three benchmark data
sets are conducted. The experimental results show that DEAN out
performs the state-of-the-art models on these benchmark problems. 

3. Deep Emotional Arousal Network 

In this section, we explain the proposed DEAN model in detail. 
Specifically, DEAN is composed of three main components:  

a Cross-modal Transformer: This module mimics the first subsystem of 
an established human emotional arousal model in physiology. More 
specifically, three pairs of cross-modal transformers (Fig 2b) are 
employed to model the inter- and intra-modality interaction among 
the modalities by leveraging attention mechanism. The modality 
with higher attention weight has greater importance.  

b Multimodal BiLSTM System: This temporal structure is used to model 
the cognitive comparators in the psychological emotional arousal 
model. The process consists of three steps: (i) extracting the context- 
dependent features from each multimodality input by applying a 
Bidirectional LSTM network, which models the inter-dependencies 
among modalities with respect to time; (ii) comparing the current 
extracted features with those from the past memory; (iii) imple
menting the information transfer in time series to imitate the 
emotional coherence.  

c Multimodal Gating Block: This gating block is adopted to imitate the 
functions of the activation mechanism in the psychological 
emotional arousal model. It is able to distinguish and fuse the in
formation from each unimodality by controlling the output infor
mation of the target mode according to the importance of the target 
modality. 

3.1. Cross-modal Transformer Module 

Inspired by the success in natural language processing with the 
Transformer-based method, a Cross-modal Transformer [5] module is 
adopted and improved in DEAN to model the multi-channel perceptual 
analysis process in the human nervous system. This module implicitly 
fuses the multimodal inputs via a feed-forward fusion process. It is based 
on a pairwise cross-modal attention mechanism, which can explore the 
interactions between multimodal inputs and learn representations 
directly from aligned multimodal streams. For the unaligned multi
modal inputs, a one-dimensional temporal convolutional layer is 
employed as a preprocessor to make the multimodal inputs aligned. 

Fig. 3. Cross-modal Transformer of V→L  
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The Cross-modal Transformer of DEAN utilizes attention mechanism 
to enhance the target modality with other modalities at the low feature 
level. Due to high performance and similar computational cost to the 
basic attention [26], a multi-head attention is normally used in 
transformed-based models for multimodal sentiment analysis and 
emotion recognition. However, with the increasing of number of heads, 
the query-vectors and key-vectors become so low-dimensional that their 
dot product cannot constitute an informative matching function any 
longer. Therefore, a cross-talking attention mechanism is introduced by 
inserting a linear projection across the attention-heads to make each 
attention head depend on all the keys and queries. Since three modalities 
(i.e., Language, Visual and Audio) are considered in this paper, six 
Cross-modal Transformers Fig. 2b) are included in DEAN. Taking the 
Cross-modal Transformer of V→L as an example (Fig. 3), the Language 
modality (L) and Visual modality (V) are set as the target and auxiliary 
counterparts, respectively. The embedding feature of the Visual mo
dality XV is used to reinforce the Language modality XL by learning the 
attention across the features of both L and V. As an example, a 
cross-talking attention for the pair of Language and Visual modality can 
be formulated by Eqs. (1)-(3). 

QLi = XLi WQi , KVi = XVi WKi , VVi = XVi WVi (1)  

t headi = softmax

(
QLi KT

Vi̅̅̅̅̅
dk

√ Wthi

)

VVi (2)  

CroTA = concat(t head1, ..., t headh) Wo (3) 

Where QLi , KVi and VVi are the corresponding Query, Key and Value 
vectors for the i-th attention head, i = 1, 2, …, h. XLi ∈ ∗R∗T×d and XVi ∈

∗R∗T×d are the aligned input embedding features of Language and Visual 
modalities for attention-head i respectively; WQi ∈ ∗R∗d×dk ,WKi ∈ ∗

R∗d×dk and WVi ∈ ∗R∗d×dv are the weight parameters to be learned; 
̅̅̅̅̅
dk

√
is 

a scale factor; Wth ∈ ∗R∗T×T×h is the parameter tensor across the 
attention-heads and Wthi ∈ ∗R∗T×T is the parameter matrix of each 
attention-head. CroTA ∈ ∗R∗T×dv is the output of the cross-talking 
attention, which is a linear projection of the concatenation of the out
puts from all h attention heads. 

In order to keep the initial information from the target modality 
together with the information reinforced by other modalities, a residual 
connection structure [27] is added after the cross-modal attention by 
using Eq. (4), 

X̃V→L= LaNorm(QL + CroTA(QL,KV ,VV) (4)  

where LaNorm denotes layer normalization [28]. 
The fusion feature of X̃V→L, therefore, contains information from 

both the target modal and its enforced supplement provided by other 
modalities. To learn more meaningful interactions across modalities, 
X̃V→L is used as an input into a feedforward network FFN. It is augmented 
by its residual to yield the output of the Cross-modal Transformer of 
V→L, i.e., XV→L, by using Eqs. (5) and (6), 

XV→L = LaNorm(X̃V→L +FFN(X̃V→L)) (5)  

FFN = W2(ReLU(W1(X̃V→L)+ b1)) + b2 (6)  

where XV→L ∈ ∗R∗T×dv . 
In a similar way, the output of Cross-modal Transformer of A→L is 

obtained, which is denoted as XA→L. Then, the output of the Language 
modality with its overall interactions from other modalities is defined by 
Eq. (7). 

YL = Concat(XV→L, XA→L) (7) 

Each pair of Cross-modal Transformers is used to model the in
teractions between different modalities, respectively. Therefore, the 
output of each pairwise fusion result pertaining to a different target 
modality is obtained by Eqs. (8) and (9). 

YV = Concat(XL→V , XA→V) (8)  

YA = Concat(XL→A, XV→A) (9)  

where YL ∈ ∗R∗T×2dv , YV ∈ ∗R∗T×2dv and YA ∈ ∗R∗T×2dv denote the 
output of different Cross-modal Transformer after being reinforced by 
other auxiliary modalities, respectively. 

3.2. Multimodal BiLSTM System 

Human emotion is coherent in time. The emotional change at the 
current moment is often affected by its past emotional memory. Due to 
the strength of the LSTM network in capturing long-distance semantic 
dependency, it is used to imitate the function of comparators in the 
psychological emotional arousal model. In DEAN, its Multimodal 
BiLSTM System (Fig. 4) can learn the sequential pattern of each modality 
by leveraging both forward and backward semantic dependency from 
training samples. As such, it is able to capture the coherence of emotion 
by amplifying the contribution of crucial factors in memory. 

Let Ym
t be the output of the m-th Cross-modal Transformer at time t, 

where m ∈{Language, Visual, Audio}. Ym
t goes through the input gate, 

Fig. 4. Multimodal BiLSTM System  
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forgetting gate and output gate of LSTM in a bidirectional way. It is 
compared with Tm

t− 1 in memory to yield the output, Tm
t . The outputs of 

LSTM in both forward and backward manners at time t are concatenated 
to form the output of the BiLSTM module. The output of LSTM is 
updated by Eqs. (10)-(15). 

im
t = σ

(
Wm

i

[
Tm

t− 1,Y
m
t

]
+ bm

i

)
(10)  

fm
t = σ

(
Wm

f

[
Tm

t− 1,Y
m
t

]
+ bm

f

)
(11)  

om
t = σ

(
Wm

o

[
Tm

t− 1,Y
m
t

]
+ bm

o

)
(12)  

c̃m
t = tanh

(
Wm

c̃

[
Tm

t− 1,Ym
t

]
+ bm

c̃

)
(13)  

cm
t = fm

t ⊙ cm
t− 1 + im

t ⊙ c̃m
t (14)  

hm
t = om

t ⊙ tanh
(
cm

t

)
(15)  

where imt , fm
t and om

t denote the input gate, forgetting gate and output 
gate of LSTM for the m-th modality at time t, respectively, Wm

i , Wm
f , Wm

o , 
Wm

c̃ 
are their corresponding weight matrices, ⊙ denotes the Hadamard 

product (element-wise product), and σ is the sigmoid activation func
tion. The output of the multimodal BiLSTM module is denoted by 
TL ∈ ∗R∗T×dL , TV ∈ ∗R∗T×dV , TA ∈ ∗R∗T×dA respectively. It concatenates 
the outputs of the forward and backward LSTM models, which guaran
tees the temporal interaction of multimodalities. The input of BiLSTM 
for each modality comes from the output of its corresponding Cross- 
modal Transformer at timestep t, which preserves the spatial interac
tion of different modalities. As a result, the Multimodal BiLSTM System 
captures both the dynamics of intra-modality and inter-modality from 
the spatial and temporal viewpoints. 

3.3. Multimodal Gating Block 

A Multimodal Gating Block (Fig. 5) is constructed to model the 
activation mechanism of the human emotional arousal model. This 
block reinforces the target modality and controls the output of each 
target modality by implicitly taking its importance into account. 

The concatenation of TL, TV, TA is firstly filtered by three gates 
constructed with three feedforward neural networks, respectively, in 
order to obtain the weight-like vector for each modality. The output of 
the Multimodal Gating Block is consequently obtained by considering 
the distinction of different modalities. The process is implemented using 
Eqs. (16)-(20). 

T [L,V,A] = Concat(TL, TV ,TA) (16)  

γL = DγL

(
T [L,V,A]) (17)  

γV = DγV

(
T [L,V,A]) (18)  

γA = DγA

(
T [L,V,A]) (19)  

Z = Concat(γL ⊙ TL, γV ⊙ TV , γA ⊙ TA) (20)  

where γL ∈ ∗R∗T×dL , γV ∈ ∗R∗T×dV , γA ∈ ∗R∗T×dA represent the output of 
each target modality based on the gating mechanism, respectively. 

The information flow of DEAN is shown in the following Algorithm.  
Algorithm: Deep Emotional Arousal Network (DEAN), Cross-modal Transformer 

(CT), Multimodal BiLSTM System (MLS) and Multimodal Gating Block (MGB), 
where m ∈ M = {L, V, A}. 

1: DEAN (Xm) 
2: Ym ← CT (Xm) 
3: Tm ← MLS (Ym) 
4: Z ← MGB (Tm,∪m∈M{Tm}) 
5: return Z 
6: CT (Xm) 
7: for mα ∈ M do: ◃ for all the M modalities 
8: for mβ ∈ M − mα do: 
9: Qmα i ←WQi Xmα i , Kmβ i

= WKi Xmβ i
, Vmβ i

= WVi Xmβ i 

10: t headi = softmax
(Qmα i KT

mβ i̅̅̅̅̅
dk

√ Wthi

)

Vmβ i 

11: CroTA = concat(t head1 , ..., t headh) Wo 

12: X̃mβ →mα ← LaNorm(Qmα + CroTA)
13: FFN ←Wk2 (ReLU(Wk1 X̃ + bk1 ))+ bk2 

14: Xmβ →mα ←LaNorm(X̃mβ →mα + FFN)

15: return Xmβ →mα 

16: Ym←Concatmβ∈M− mα Xmβ →mα 

17: return Ym 

18: BiLSTM (Ym) 
19: for t = 1, …, T do: 
20: LSTM_STEP (Ym

t ,hm
t− 1) 

21: for m ∈ M do: ◃ for M modalities 
22: update each LSTM module by using 
23: Eqs. (9)-(14) 
24: return hm

t 
25: Tm←∪t∈T{hm

t }

26: return Tm 

27: MGB (Tm,∪m∈M{Tm}) 
28: γm← D(∪m∈M{Tm}; θγm )

29: Z ← Concatm∈M γm ⊙ Tm 

30: return Z  

4. Experiments 

4.1. Datasets 

To evaluate the efficiency of the proposed DEAN model, extensive 
experiments are performed using three benchmark problems pertaining 
to multimodal sentiment analysis and multimodal emotion recognition. 
For the sentiment analysis task, CMU-MOSI and CMU-MOSEI are 
selected as the benchmark datasets, while for the emotion recognition 
task, IEMOCAP dataset is used for performance evaluation and 
comparison. 

CMU-MOSI consists of 2,199 short monologue video clips of 89 
speakers from different national backgrounds on YouTube. Acoustic and 
visual features of CMU-MOSI are extracted at a sampling rate of 15 and 
12.5 Hz respectively, and textual data are segmented per word. CMU- 
MOSEI has 3,228 monologue video clips containing a small number of 
characters for a total of 65 hours. Both datasets (MOSI and MOSEI) have 
been labeled on a continuous scale of [-3,3]. The IEMOCAP dataset 
covers 302 video sessions of 10 actors lasting up to 11 hours. Each 
segment has a corresponding emotional label, i.e., anger, excitement, 
fear, sadness, surprise, frustration, happiness, disappointment and 
neutrality. 

Fig. 5. Multimodal Gating Block  
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4.2. Baseline Models 

The performance of DEAN is compared with those from seven state- 
of-the-art models in multimodal sentiment analysis and emotion 
recognition. These baseline models cover the main categories of models 
for multimodal sentiment analysis and emotion recognition proposed in 
recent years, which include the LSTM-based fusion model, Tensor-based 
model, Memory-based model, Attention-based model and other novel 
models. 

BC-LSTM (Bidirectional Contextual LSTM) [2] is a multimodal 
sentiment analysis model that captures context information in a video, 
where the regular LSTM is replaced with a Bi-directional LSTM. 

TFN (Tensor Fusion Network) [21] is a tensor-based fusion model, 
which explicitly aggregates unimodal, bimodal and trimodal in
teractions and captures view-specific and cross-view dynamics by 
creating a multidimensional tensor. 

MFN (Memory Fusion Network) [29] is a memory-based fusion 
network that constructs a multimodal gated memory. The network is 

composed of a Delta-memory Attention Network, a Multi-view Gated 
Memory and the System of LSTMs, where the memory cell is updated 
together with the evolution of hidden states in three unimodal LSTM 
modules. 

Graph-MFN (Graph Memory Fusion Network) [30] uses a dynamic 
fusion graph to model cross-modal interactions on the basis of the cyclic 
architecture of MFN. Graph-MFN replaces the Delta memory Attention 
network in MFN with a Dynamic Fusion Graph to make the network 
more interpretable. 

RAVEN (Recurrent Attended Variation Embedding Network) [25] 
uses multimodal shifted word representations based on the visual and 
acoustic modalities. It effectively models the dynamic change of word 
representation space in a non-linguistic context. 

MulT (Multimodal Transformer) [5] uses the Transformer structure 
to model unaligned multimodal sequence interactions. It achieves better 
performance on CMU-MOSI, CMU-MOSEI and IEMOCAP datasets. 

QMN (Quantum-like Multimodal Network) [31] utilizes the mathe
matical formalism of quantum theory (QT) and a LSTM network to 

Fig. 6. Comparison results in term of three main metrics on CMU-MOSI  

Fig. 7. Comparison results in term of three main metrics on CMU-MOSEI  
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capture the interactions between different modalities from different 
speakers. QMN consists of a multi-modal decision fusion method and a 
strong/weak influence model to represent the interactions with
in/between utterances. 

5. Results and Discussion 

Various experiments are conducted with CMU-MOSI and CMU- 
MOSEI for multimodal sentiment analysis and IEMOCAP for emotion 
recognition. Each dataset is divided into 70% for training, 10% for 
validation, and 20% for test, respectively. 

The comparison results of multimodal sentiment analysis are shown 
in Figs. 6 and 7, respectively, with the best scores highlighted in bold. 
The results of DEAN are calculated by averaging 40 runs. The best 
hyperparameters of DEAN are ldim = vdim= adim= 30, batch size bs = 24, 
number of heads h = 5 and learning rate lr = 0.001. 

Fig. 6 shows that DEAN outperforms other methods in discriminating 
the finer-grained human emotions. This is due to the capability of DEAN 
in capturing the characteristics of the human emotion arousal model. 
This capability is in line with the statement published in an article in 
Science, i.e., “it is currently unclear which aspects of the biological 
circuitry are computationally essential and could be useful for network- 
based Artificial Intelligence system, but the differences in structure are 
prominent.” (Ullman et al., [32]). Combining deep learning with 
brain-like innate structures endows DEAN with the power of handling 
complicated interactions among multimodality inputs. From Fig. 6 we 
notice that DEAN increases ACC7 by 2.2% and decreases MAE by 1.8, as 
compared with those from MulT on the CMU-MOSI dataset. Fig. 7 shows 
that DEAN achieves great performance on the CMU-MOSEI dataset. 

In order to obtain fine-grained emotion understanding, we conduct 
extra experiments for emotion recognition with the IEMOCAP dataset. 
Table 1 shows the experimental results. DEAN achieves better scores in 
the categories of happy, angry and neutral emotions as compared with 
those from state-of-the-art methods, except for the category of sad. For 
this sad emotion, memory-based models produce the highest score 
among all compared models. Recognizing the neural emotion is the most 
challenging task for all models, as listed in Table 1. 

5.1. Ablation Studies 

In this section, various ablation studies have been conducted on both 
CMU-MOSEI and CMU-MOSI datasets. The aims are: (1) to disclose the 
influence of each individual module on the proposed model, (2) to 
investigate the importance of each modality, (3) to explore the in
teractions between modalities. 

5.1.1. The influence of each individual module on the proposed model 
To investigate the effect of each individual module of DEAN, we 

gradually remove each component from DEAN, as follows. 
DEAN: The original proposed model, which consists of three mod

ules, i.e., (1) Cross-modal Transformer, (2) Multimodal BiLSTM System 
and (3) Multimodal Gating Block, is used as the baseline for comparison. 

DEAN w/o GATE: The Multimodal Gating Block is removed from 
DEAN. In this case, the model is similar to an attention-based LSTM 
model [31], which lacks the capability of controlling the output of target 

modality. From the standpoint of psychology, DEAN w/o GATE is 
analogous to the perceptual reorganization of patients after synesthesia 
imbalance. 

DEAN w/o BiLSTM: The multimodal BiLSTM system is removed 
from DEAN. The output only implements the spatial fusion of multi
modal information while ignoring the temporal fusion information. It is 
designed to evaluate the importance of spatio-temporal fusion between 
modalities. 

DEAN w/o BiLSTM & GATE: Removing both Multimodal Gating 
Block and Multimodal BiLSTM system from DEAN results in an 
attention-based fusion model. In this case, we can explore that whether a 
Transformer (i.e., the Cross-modal Transformer module) can fully 
replace RNN models in sequential modeling. 

Table 2 and Table 3 show the experimental results of ablation studies 
for sentiment analysis on CMU-MOSI. The comparison results indicate 
that all the DEAN models with cross-talking attention on the Cross- 
modal transformer outperforms the counterparts without the cross- 
talking attention. The DEAN with all modules achieves the best result 
on all metrics. Taking Acc7 with cross-talking attention as an example, it 
is found from Table 2 that DEAN w/o BiLSTM and DEAN w/o GATE 
produce decreased accuracy rates of 51.6% and 52.0%, as compared 
with 52.3% of DEAN, respectively. Similar results are shown in Table 3. 
This empirical outcome indicates that the Multimodal BiLSTM system is 
important, which supports our claim that the coherence of human 
emotion is critical for sentiment analysis. The experimental results also 
bring an insight that RNN-like structure is still helpful to improve the 
temporal aspects of transformer-based models. 

5.1.2. The importance of individual modality 
To investigate the importance of each modality, we conduct several 

experiments with and without language, audio and visual modalities for 

Table 1 
Results for emotion recognition on IEMOCAP   

Happy Sad Angry Neutral 
Metric Acc F1 Acc F1 Acc F1 Acc F1 

BC-LSTM 83.1 81.7 82.1 81.7 85.0 84.2 66.1 64.1 
MFN 90.2 85.8 88.4 86.1 87.5 86.7 72.1 68.1 
RAVEN 87.3 85.8 83.4 83.1 87.3 86.7 69.7 69.3 
MulT 90.7 88.6 86.7 86.0 87.4 87.0 72.4 70.7 
DEAN (ours) 90.6 89.6 86.9 86.3 88.7 88.6 72.4 71.7  

Table 2 
Experimental results of module ablation on CMU-MOSEI  

With cross-talking attention Acc7 Acc2 F1 MAE 

DEAN 52.3 83.3 83.2 0.571 
DEAN w/o GATE 52.0 83.0 82.8 0.573 
DEAN w/o BiLSTMs 51.6 82.5 82.3 0.579 
DEAN w/o BiLSTMs & GATE 51.2 81.9 81.8 0.583 
Without cross-talking attention Acc7 Acc2 F1 MAE 
DEAN 52.1 82.8 82.9 0.573 
DEAN w/o GATE 51.4 82.0 82.3 0.591 
DEAN w/o BiLSTMs 50.8 82.2 81.6 0.596 
DEAN w/o BiLSTMs & GATE 50.3 80.9 80.9 0.599  

Table 3 
Experimental results of module ablation on CMU-MOSI  

With cross-talking attention Acc7 Acc2 F1 MAE 

DEAN 42.2 82.7 82.6 0.843 
DEAN w/o GATE 41.9 82.4 82.3 0.849 
DEAN w/o BiLSTMs 41.5 82.0 82.1 0.852 
DEAN w/o BiLSTMs & GATE 40.0 81.2 81.2 0.854 
Without cross-talking attention Acc7 Acc2 F1 MAE 
DEAN 41.3 82.1 82.0 0.857 
DEAN w/o GATE 40.9 81.6 81.5 0.867 
DEAN w/o BiLSTMs 40.5 81.4 81.2 0.862 
DEAN w/o BiLSTMs & GATE 40.1 80.6 80.4 0.869  

Table 4 
Ablation study results on importance of individual modality  

Unimodality Acc7 Acc2 F1 MAE 

Language 47.5 78.1 78.7 0.647 
Audio 45.1 66.2 70.3 0.741 
Visual 43.4 65.6 69.9 0.762 
Multi-modality with DEAN 52.1 83.3 83.2 0.571  
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sentiment analysis on CMU-MOSEI. The embedding vector of each in
dividual modality is used as the input for its corresponding Transformer 
separately. The ablation study results are illustrated in Table 4. 

We can draw a conclusion from Table 4 that the modality of Lan
guage plays an important role in sentiment analysis, as compared with 
Audio and Visual modalities. This is because Language is considered as a 
pivot modality for sentiment analysis when Transformer-based methods 
are used. The experimental results also indicate that the Multimodal 
Gating Block is indispensable for distinguishing the contribution of each 
modality, since the integrated model with all three modules achieves the 
best performance, as compared with those from individual modality 
input. 

5.1.3. The interactions between modalities 
To study the interactions between modalities, we conduct bi- 

modality and tri-modality experiments. The aim is to observe the 
interaction between auxiliary modality and target modality, where 
language, visual and audio are set as the target modality and auxiliary 
modality respectively. The experimental results are shown in Table 5 
and Table 6. 

Based on Table 5 and Table 6, the performance of the target modal 
can be enhanced by other auxiliary modalities, in the way of bi-modality 
or tri-modality. Specifically, the tri-modality combination achieves the 
highest performance, as compared with unimodal and bimodal senti
ment analysis. The performance of taking language as the target mo
dality is better than those of visual or audio as the target modality, 
regardless of whether one or two auxiliary modalities are used. Table 5 
shows that taking language as the target while visual and audio as 
auxiliary modalities yields better results, i.e., 50.7% and 50.3% for 
language, 49.5% and 44.7% for visual, and 48.6% and 44.9% for audio. 
Table 6 shows similar observations. 

In addition, language plays a crucial role as an auxiliary modality. 
Compared with L→V, Acc7 of A→V decreases by 4.8% in the absence of 
feature inputs from the language modality. This observation further 
indicates the importance of language in multimodal sentiment analysis. 

6. Conclusions 

Inspired by the human emotional arousal model in psychology, we 
have proposed a Deep Emotional Arousal Network (DEAN) for multi
modal sentiment analysis and emotion recognition tasks in this paper. 
DEAN provides an integrated framework for modelling human 
communication with multimodality information. It is capable of repre
senting the emotional coherence by incorporating time-dependent in
teractions into the parallel structure of a Transformer model and 

identifying the distinction of different modalities by embedding a 
Multimodal Gating Block. A series of comprehensive evaluation and 
analysis studies on three benchmark datasets have been conducted. The 
empirical results indicate the effectiveness of DEAN in multimodal 
sentiment analysis and emotion recognition tasks, outperforming 
several state-of-the-art models on all the three benchmark problems. 

The research of multimodal sentiment analysis and emotion recog
nition is highly correlated to the studies on multisensory integration in 
brain neuroscience [33]. We aim to integrate the recent findings from 
the multisensory literature into DEAN for multimodal sentiment analysis 
and emotion recognition in future. 
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