Pattern Recognition 144 (2023) 109827

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Check for

Feature fusion network for long-tailed visual recognition o
Xuesong Zhou, Junhai Zhai *, Yang Cao

Hebei Key Laboratory of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei
University, Baoding, 071002, Hebei, China

ARTICLE INFO ABSTRACT

Keywords: Deep learning has achieved remarkable success in recent years; however, deep learning methods face significant
Long-tailed learning challenges on long-tailed datasets, which are prevalent in real-world scenarios. In a long-tailed dataset, there
Head and tail classes are many more samples in the head classes than in the tail classes, and this class imbalance makes it difficult

Feature representations

. to learn a good feature representation for both head and tail classes simultaneously, particularly when using a
Feature fusion network

single-stage method. Although the existing two-stage methods can alleviate the problem of single-stage methods
not performing well on the tail classes by classifier retraining in the second stage, this does not resolve the
problem of insufficient learning of head and tail features. Thus, in this paper, we propose a two-stage feature
fusion network (FFN). The proposed FFN addresses this issue using one network for the head classes and
another network for the tail classes, each of which is trained with a different loss function. This allows the
feature learning module to effectively distinguish between the head and tail classes in the embedding space.
The classifier learning module fuses the features obtained from the feature learning module, and the classifier
is fine-tuned to classify the input images. Different from traditional two-stage methods, the proposed utilizes
different loss functions for the head and tail classes; thus, the classifier can achieve balanced results between the
head and tail classes. We conduct extensive experiments on three benchmark datasets comparing the proposed
FFN with six state-of-the-art methods including two baseline methods, the experimental results demonstrate
that the FFN achieves significant improvement on all three benchmark datasets. The code is publicly available
at https://github.com/zxsong999/Feature-Fusion-Network.pytorch.

1. Introduction These techniques attempt to increase the sample size of the tail classes
during training and make the learned features more discriminative for

Many traditional deep learning algorithms rely on manually col- all classes regardless of their frequency.
lected and constructed balanced datasets, e.g., ImageNet ILSVRC [1], Motivation. Class rebalancing is a common strategy to address
MS COCO [2], and Places Database [3]. However, in real-world ap- the long-tail distribution problem in deep learning. Here, the class
plications, the data distribution is typically not balanced [4,5], and a distribution in the training data is modified such that head and tail
long-tailed distribution (see Fig. 1) can pose significant challenges for classes have equal representation. This can be realized by assigning

traditional deep learning algorithms because the model may become
biased toward head classes during training. This can lead to poor per-
formance on tail classes, which are often the classes of interest in many
applications, such as mechanical fault diagnosis and identification of
rare animals. Long-tail visual recognition has various applications. For
instance, in the field of security surveillance, it can optimize the detec-
tion and identification of uncommon security incidents and criminal
behaviors. Similarly, in medical image analysis, it can be utilized to
identify infrequent cases or subtypes of diseases, significantly aiding
doctors in accurate diagnoses and treatment planning. Researchers
have proposed various techniques to address the class imbalance issue,

e.g., re-sampling, re-weighting, and feature transfer, to balance the
class distribution and improve the model’s performance on tail classes. head and tail features to address the limitations of traditional methods.

higher weights to samples from the tail classes during training, which
effectively rebalances the loss and ensures that the model learns to
assign equal importance to all classes. However, this strategy compro-
mises the ability to represent the entire dataset. Although this method
can improve the accuracy of the tail classes significantly, it is based
on sacrificing the accuracy of the head classes [6]. For traditional deep
learning methods, head classes are dominant and thus contribute more
than the tail classes in updating the network parameters, resulting
in bias towards head classes. Moreover, traditional methods normally
underfit the tail classes and show poor performances on the tail classes
in the test set. This motivated us to develop a method to balance
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Fig. 1. Diagram of long tail distribution.

To achieve this, we proposed a multi-branch feature fusion approach.
Specifically, we employ two structurally identical backbone networks
to learn features using different losses. One network distinguishes head
classes in the embedding space, and the other network distinguishes
tail classes in the embedding space. Finally, we perform fusion on the
features extracted in the first stage and retrain the classifier.

Contribution. We propose a method to address the long-tailed
distribution in recognition tasks. Our contributions include: (1) The
accuracy of head and tail classes is balanced by utilizing two feature
extraction networks biased toward head or tail classes. Then, the ex-
tracted features are fused and used to retrain the classifier. (2) The
proposed method differs from the traditional two-stage training meth-
ods, which utilizes a different loss function in the classifier training
stage than the first stage. (3) The results of extensive experiments
conducted on three popular long-tail datasets comparing the FFN with
six state-of-the-art methods demonstrate that the proposed method
outperforms the six comparative methods.

2. Related work

Long-tail image classification is a challenging research topic. To
address this issue, various methods have been proposed [7]. We classify
these methods into the following categories:

Data augmentation. The data augmentation method typically
employs generative models, e.g., generative adversarial networks, vari-
ational autoencoders, diffusion models, and their variants, to generate
new samples to increase the number of samples for tail classes. A
previous study [8] employed one or more data augmentation methods
to improve the low performance of traditional methods caused by
an insufficient number of samples in unbalanced datasets. Feature
augmentation and sampling adaptation (FASA) proposed in [9] solves
the insufficient sample size problem by enhancing the feature space
(especially for tail classes). Implicit semantic data augmentation (ISDA)
proposed in [10] augments the number of samples for tail classes.
Meta-semantic augmentation proposed in [11] is a variant of ISDA.

Class-Level re-weighting. Balanced meta-softmax proposed in
[12] is a resampling strategy for long-tail learning, which explicitly
considers the change of label distribution in the meta-optimization
process. To make the decision boundary more favorable for tail classes,
a long-tailed object detector with classification equilibrium [13] is
proposed, which employs a fractionally guided equilibrium loss and a
special sampler to adjust the decision boundary of the tail class features
in the embedding space. To improve the deviation of the classification
head in the head and the tail classes, Wang et al. [14] proposed a novel
sampling scheme SimCal that initially uses image-level sampling and
then uses instance-level sampling.
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Metric learning. The metric learning method solves the target
problem by changing the distance between the extracted features
and the model classifier. For example, label-distribution-aware margin
(LDAM) [15] improves the existing soft margin loss [16]. By assigning
larger margins to the features of tail classes, a previous study [17]
made it easier to distinguish tail classes from the head classes in
the embedding space, thereby improving the accuracy of the model’s
tail class recognition. The method proposed in [18] is based on label
frequency enforcing class-dependent margins and encouraging tail
classes to have larger margins. Different from the methods in [17,18],
RoBal [19] adds an extra margin to each head class to avoid the
problem where the margins of tail classes are too large. The approach
presented in [20] shifts the decision boundary to eliminate the a priori
gap and representation gap via post-threshold processing.

Decoupling methods. Typically, decoupling methods decouple the
learning process into feature learning and classifier learning processes.
Kang et al. [21] proposed a two-stage long-tail learning method that
utilizes a different sampling strategies in the feature learning phase
and a one-stage feature extractor with fixed parameters in the classifier
learning phase to train the classifier. Based on the work in [21],
Kang et al. [22] employed a k-positive contrastive loss to improve the
decoupled training method in order to learn a more efficient feature
space and make each class easily distinguishable in the feature space.
Another study [23] proposed a weight-guided class complementing
framework.

Transfer learning. Liu et al. [24] found that head classes have
large spatial spans, the intra-class features are diverse, the spatial
spans of tail classes are much smaller than that of head classes, and
there is a lack of diversity within class. To handle this problem,
they proposed a solution to transfer the diversities of head classes to
tail classes by transferring variances. Self-supervised pre-training [25]
effectively improves imbalanced learning by utilizing unlabeled data
for semi-supervised training. In addition, SSD [26] applies knowledge
distillation to the long-tail recognition process. Here, the backbone
network is trained on the original data through self-supervision and
original label supervision, and then the balanced sampling method is
employed to generate soft labels. Finally, the final classifier is combined
with decoupling training.

Mixture-of-Experts. The self-supervised aggregation of diverse
experts method [27] learns multi-expert solutions that specialize in
different classes of distributions and combine multiple experts to al-
leviate the long-tail distribution problem. LFME [28] combines the
advantages of multiple experts training multiple classification heads
on a smaller subset, and it synthesizes all classification heads to make
a judgment. Based on these experts, LFME employs multiple teacher
experts for knowledge distillation to refine a unified student model.
ACE [29] employs a multi-expert structure, where each expert is the
most effective for the subset it is responsible for and is complementary
to the other experts.

Super-class construction. A previous study [30] added a regular-
ization term to the objective function and proposed a deep super-class
learning model. The model learns both features and classifiers in an
end-to-end process to obtain super-class structures. Ma et al. [31]
designed a two-step training mode, where tail classes in the dataset
are first aggregated into superclasses, and then the aggregated dataset
is used to train a prototype model. Finally, the aggregated active
super-classes are scattered to train the model to distinguish the tail
classes.

This paper focuses on class-level re-weighting and decoupling
method. The authors find that while class-level re-weighting can im-
prove decision boundaries for tail classes, it often results in significantly
sacrificing performance on head classes. On the other hand, the de-
coupling method partially solves the problem of classifier learning
bias caused by insufficient samples of tail classes. To overcome these
limitations, this paper proposes a Feature Fusion Network (FFN) that
combines the advantages of both approaches. FFN aims to handle the
problem of sacrificing performance on head classes while maintaining
the excellent performance on tail classes. FFN provides a novel solution
that combines the advantages of the two methods.
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Fig. 2. Classification accuracy using KPS loss and CE loss on CIFAR100-LT (The black curve in the figure is the number of samples per class) with an imbalance factor 200.
The blue part in the figure is CE Loss, and the orange part is KPS Loss. It can be seen that CE Loss is significantly better than KPS Loss on the head classes, and KPS Loss is
significantly better than CE Loss on the tail classes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Methodology

It is observed that the traditional cross-entropy loss (CE loss) can
achieve better results on head classes and Key Point Sensitive Loss
(KPS Loss) can achieve better results on tail classes, and both of them
have a significant drawback: CE Loss will underfit the tail classes,
i.e. it performs poorly on the tail classes, and KPS Loss is to trade the
accuracies of the head classes for the ones of the tail classes, as shown
in Fig. 2. We want to find a way to retain its excellent tail performance
without losing too much accuracies of head classes by fusing the feature
extraction network of KPS with that of CE. To this end, we design a
novel long-tail recognition framework called FFN.

3.1. Data augmentation methods used in the training process

To learn more effective features, we adopt mixup [32] in the feature
extraction phase. Mixup can make feature learning more effective
because (1) mixup can alleviate the overfitting of the head class by
traditional methods; (2) mixup can improve the quality of representa-
tion learning but has little effect on classifier learning. Based on these
observations, MiSLAS [33] recommends using mixup for enhancing
representation learning in decoupled schemes. Please note that mixup
is not used in the classifier training phase.

Mixup is a generic nearest-neighbor distribution of the original data
distribution

W (%51 x03) = = PEBE5) ©)
J

where A ~ Beta(a, a), for « € (0, 0). In a nutshell, sampling from the
mixup vicinal distribution produces virtually feature-target vectors by

F=A-x+(1-1-x; ©))
and
F=A-y+A=1-y; 3

where (x;, ;) and (x;, y;) are two data points drawn randomly from the
training data, and 1 € (0, 1).

3.2. Overall framework

The overall framework of FFN is shown in Fig. 3, FFN has two
key components: (1) a feature learning branch that uses two struc-
turally identical backbone networks with different loss functions (fea-
ture learning phase), and (2) a classifier that fuses the features extracted
from the two backbone networks in the feature learning phase and is
fine-tuned to classify input images (classifier learning phase). Specifi-
cally, for all the networks in the feature learning phase and the classifier
learning phase, a residual network with the same architecture but
different weights is used. Let (x, y) € S, x be the input training image, y
is the image label corresponding to x, .S is a dataset with k classes and
n samples in total, and z, is the predicted score of the class y. For the
feature learning phase, we use two feature extraction networks, one of
which uses Cross-entropy Loss.

Leg(x,y) = —log <e—> @
T e

j=1¢
The other uses KPS Loss [17]
es-(ry cos fy—m,)

L L) =—1
KPS(X y) og es-(ry cosGy—my) + Zf:] i o571 €os 0; 5)

where 6, denotes the angle between the class anchor point vector w;

and the feature f, and cos 6, is given by
wl f
z,)=—"
¥
‘wa [l

In (5), r,isa labeling correlation factor given by (7), and n, is the
number of samples in the class y and C, is a constant.

©

cos 6, = Norm (

r, =logn, +C, 7
In (5), m,, is the margin that is given by (8).
m,=C, —logn, (8)

where C,, > n,,,.
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Second Stage )

Fig. 3. The FFN is a long-tail recognition framework that addresses the problem of imbalanced class distribution in deep neural network training. The FFN framework consists of
two key components: (1) Feature Learning Branch: The feature learning branch includes two structurally identical backbone networks, one biased towards the head classes and
the other towards the tail classes. (2) Classifier: The classifier fuses the features extracted from the two backbone networks and fine-tuns to classify input images.
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Fig. 4. The prediction result of logists fusion.

In the classifier learning phase, we use the following LDAM Loss
[15]

ezy—Ay
Lipam(x,y) = —log ——=————— ©)
4 T
where the 4, is defined by
C
iyt (10)
ny

3.3. Proposed feature fusion networks

Fusion method selection. In our method, we choose the feature
fusion rather than logists fusion. The reason is that we find by exper-
iments the prediction result of logists fusion given by the following
formula is very poor, as shown in Fig. 4.

Logitsgygon = Wy + Logitscg + w, - Logitsypg an

where Logitsqp and Logitsg pg are the softmax logits obtained by CE
loss and KPS loss respectively.

After the fusion method is selected, we use the samples (x, y) € S to
train the two features learning networks Ny and N pg by the CE loss
and KPS loss respectively, and obtained the features f.p and fgpg for
fusing in the next phase. The f-y and fxpg are the embedding space
features extracted by N and Ny pg respectively, which are given by

Jfeg = Neg(x) (12)
and
Sxps = Ngps(x) 13)

Classifier Selection. In the classifier learning phase, fxpg and fcg
obtained in the feature extraction phase are used as inputs for classifier

Table 1
The basic setup of the feature learning phase.
Dataset CIFAR10-LT CIFAR100-LT ImageNet-LT
Backbone ResNet-32 ResNet-32 ResNet-50
Initial /, 0.1 0.1 0.1
/. warm-up Yes Yes No
Batch size 64 64 64
Weight decay 2 x 1074 2 x 1074 1x 107
Epochs 200 200 200
I, decay ratio 0.01 0.01 0.1
I, decay epochs 160, 180 160, 180 120, 160
Table 2
The basic settings of the classifier learning phase.
Dataset CIFAR10-LT CIFAR100-LT ImageNet-LT
Backbone ResNet-32 ResNet-32 ResNet-50
Initial /, 0.1 0.1 0.1
Batch size 64 64 64
Weight decay 2 x 1074 2 x 1074 1x 107
Epochs 30 30 30
Fusion coefficient w, 0.5 0.9 0.9
Fusion coefficient w, 0.5 0.1 0.1
training, and the output logits are expressed as
z=w; - fxps + Wy - fcg a4

where z € RP is the predicted output, i.e., [z, z,,...,2zp]", wy, W, are
the fusion coefficients of fyps and fcg, wy,w, € [0,1] and w; + w, = 1.
Finally, LDAM Loss [15] is applied to calculate the Loss.

4. Experiments
4.1. Datasets

The proposed method was evaluated on three benchmark datasets
i.e., the CIFAR10-LT, CIFAR100-LT, and ImageNet-LT datasets. Note
that the original versions of CIFAR-10 [34], CIFAR-100 [34], and
ImageNet-2012 [1] are all balanced datasets. In this evaluation, we
employ the long-tailed versions of the CIFAR-10, CIFAR-100, and
ImageNet-2012 datasets [35,36].

CIFAR-10/100 LT. The CIFAR-10/100 LT dataset is a modified
version of the original CIFAR-10/100 dataset [35]. This dataset has an
exponentially decreasing number of training samples for each class. By
a factor y € (0,1), the number of samples per class is decreased in a
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(a)KPS on training set

(b)FEN on training set

(c)KPS on test set

(d)FFN on test set

Fig. 5. Visualization of the embedding via t-SNE on CIFAR10-LT with y = 10, where backbone network is ResNet-32.

controlled manner, where u is a hyperparameter regulating the level
of imbalance. Note that the test data are not altered. We conducted
experiments using CIFAR-10 and CIFAR-100 LT datasets, which have
imbalance factors of 10, 20, 50, 100, and 200, respectively.

ImageNet-LT. The original ImageNet-2012 is a large real-world
dataset for image classification and object detection. We build on the
work of Liu et al. by creating a long-tailed version of the dataset using
the Pareto distribution [36] and power-valued samples a = 6 from the
original ImageNet-2012 dataset [1]. The test set has not been altered.
With a maximum of 1280 images per category and a minimum of five
images per category, ImageNet-LT has a total of 115.8 K images from
1000 categories.

4.2. Experimental settings

Basic settings of CIFAR10/100-LT. The CIFAR10/100-LT use the
following augmentation strategy [37]. (1) randomly crop a 32 x 32
region from an image. (2) flip the image horizontally with probability
0.5. (3) pad four pixels on each side of the cropped region with the
average of the pixels in the image. This strategy is utilized to increase
the variability of the training data and prevent overfitting. Other basic
settings are shown in Table 1.

Basic setup of ImageNet-LT. The basic setup is summarized as
follows. (1) The shorter dimension of the image was scaled to 256. (2)
a random 224 x 224 patch or its horizontal flip was cropped from the
scaled image for data augmentation following the strategy presented
in the literature [38]. Other basic settings, such as the optimizer and
learning rate schedule are shown in Table 2.

4.3. Compared methods and evaluation metric

In these experiments,we compare the proposed method with two
baseline methods: cross-entropy loss (CE loss) and class-balanced soft-
max CE Loss (CBL). In addition, we compared the FFN model with the
four state-of-the-art methods KPS [17], LDAM-DRW [15], CE loss +
mixup [32] and BBN [6], and the top-1 classification accuracy was used
as the evaluation metric.

Table 3
Comparative results of top-1 classification accuracy on CIFAR-10/100-LT and
ImageNet-LT using different fusion coefficients (%).

Fusion coefficient CIFAR10-LT CIFAR100-LT ImageNet-LT
Imbalance factor 200 200 -

w; =00 w,=10 79.47 20.2 5.56
w; =01 w, =09 79.81 23.97 12.81
w; =02 w,=08 80.46 29.66 32.4
w; =03 w,=07 81.43 35.9 42.23
w; =04 w,=0.6 81.7 39.81 46.41
w; =05 w,=0.5 82.65 41.35 48.35
w, =06 w,=04 81.83 42.23 49.31
w; =07 w,=03 80.1 42.55 49.87
w; =08 w,=02 78.74 42.75 50.01
w; =09 w,=0.1 77.83 43.02 50.54
w; =10 w,=0.0 77.74 42.87 49.2

4.4. Ablation study

Ablation study on fusion coefficients. To more clearly show
the impact of fusion coefficients w; and w, on the performance of
FFN, we conduct ablation experiments on fusion coefficients. In our
experiments, we use the highest imbalance factor of 200 in CIFAR10-
LT and CIFAR100-LT, which can fully demonstrate the effectiveness
of FFN on these three datasets. In Table 3 we investigate the impact
of these coefficients on classification accuracy for the three datasets.
Experimental results show that the fusion coefficients used in the
Table 2 produce the most favorable results, but in CIFAR100-LT and
ImageNet-LT, the performance varies greatly due to the difference in
the imbalance factor, which is caused by inappropriate feature fusion.

Ablation study on data augmentation. To demonstrate the perfor-
mance gain of FFN mainly comes from feature fusion rather than data
augmentation, or in other words, the contribution of feature fusion is
much more significant than that of data augmentation, we conducted
ablation study on data augmentation, and the experimental results are
listed in Table 4. The experimental results in Table 4 confirm the
correctness of the above conclusions.
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Fig. 6. Classification accuracy of CE,

Table 4

Comparative results on CIFAR-10/100-LT, ImageNet-LT in top-1 classification accuracy (%).

KPS and FFN on the CIFAR100 with imbalance factor 200(The black curve in the figure is the number of samples per class).

Datasets CIFAR10-LT CIFAR100-LT ImageNet-LT
Backbone ResNet-32 ResNet-50
Imbalance factor 200 100 50 20 10 200 100 50 20 10 -
FFN 82.65 85.24 87.67 89.54 91.18 43.02 47.51 50.01 56.34 59.3 50.54
FFN - mixup 79.41 83.04 85.84 88.45 89.38 42.05 46.8 49.25 55.37 57.64 50.2

Table 5

Comparative results on CIFAR-10/100-LT, ImageNet-LT in top-1 classification accuracy (%).
Datasets CIFAR10-LT CIFAR100-LT ImageNet-LT
Backbone ResNet-32 ResNet-50
Imbalance factor 200 100 50 20 10 200 100 50 20 10 -
CE Loss 65.68 70.7 74.81 82.23 86.39 34.84 38.43 43.9 51.14 55.71 44.51
CBL [35] 68.99 73.82 80.25 84.92 88.2 36.23 39.6 45.32 52.59 57.99 -
CE loss + mixup [32] 65.84 72.96 79.48 - - 35.84 40.01 45.16 - - 45.66
LDAM-DRW [15] 73.52 77.03 81.03 - - 38.91 42.04 47.62 - - 48.80
KPS [17] 76.92 79.93 83.91 86.07 88.56 40.06 44.79 48.62 54.67 58.04 49.34
BBN [6] 73.47 79.82 81.18 - - 37.21 42.56 47.02 - - 44.70
FFN 82.65 85.24 87.67 89.54 91.18 43.02 47.51 50.01 56.34 59.3 50.54

4.5. Results ImageNet-LT. The proposed FFN method achieved a top-1 classifi-

To investigate the effectiveness of the proposed FFN, we compare
FFN with four state-of-the-art methods and two baseline methods, and
the top-1 accuracies for all methods are reported in Table 5. Please note
that all methods are trained on the imbalanced training set while tested
on the unaltered and balanced test set.

CIFAR10/100-LT. It is observed that our proposed FFN showed
superior performances in all imbalance factors, especially with the
imbalance factor of 200. The proposed method exhibits significant
improvements, achieving 82.65% and 43.02% in top-1 classification
accuracy, outperforming the KPS method [17] by 5.73% and 2.96%,
respectively.

cation accuracy of 50.54% on this dataset, achieving a 6.03% improve-
ment over the benchmark method.

Model validation and analysis. The t-SNE visualization results
shown in Fig. 5 demonstrate that compared with the embedded features
obtained by the KPS Loss method, the embedded features obtained
by the proposed FFN method are more scattered between classes and
more compact within classes with smaller blurred regions. These results
demonstrate that the proposed FFN method is more effective in terms
of capturing the underlying structure of the data as because it produces
more distinct and separable embedded features. Fig. 6 shows the Top-
1 accuracy results for the CIFAR100-LT dataset. As can be seen, the
proposed FFN method outperformed the CE and KPS methods in terms
of both head and tail classes. These results indicate that FFN can
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combine the benefits of CE and KPS because it can retain the tail-class
effects of KPS while absorbing the head-class effects of CE. Overall, the
experimental results show that the proposed FFN method can address
the class imbalance issue in the CIFAR100-LT dataset because it can
produce more separable embedded features, differentiate between head
classes, and perform better with tail classes.

5. Conclusion

In view of the shortcoming of existing two-stage long-tailed visual
recognition methods, this paper proposed an method based on feature
fusion network. The proposed approach has three advantages: (1) it
can effectively improve the recognition accuracy of the samples in tail
classes without deteriorating the recognition accuracy of samples in
head classes, this merit distinguishes the proposed method from the
existing two-stage methods. (2) The proposed feature fusion network
can take into account both head classes and tail classes simultaneously.
The features learned by the feature fusion network have good represen-
tation ability for samples of both head classes and tail classes. (3) The
long-tailed recognition accuracy of the proposed approach is improved
on all three datasets, CIFAR10-LT, CIFAR100-LT, and ImageNet-LT.
There is room for improvement of the proposed approach on large scale
long-tailed datasets. Future work of this study should focus on two core
aspects. Inspired by multimodality learning, the feature fusion mecha-
nism can be extended to fusing features from different modalities. In
addition, feature fusion can be extended to more challenging problems,
e.g., open long-tailed recognition tasks.
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